Erste Cyborg-Bakterien entwickelt

ETH-Wissenschaftler schufen Bakterien, deren Wachstum sich vollautomatisch über einen Computer steuern l?sst. Die Schnittstelle zwischen Computer und Bakterien funktioniert mit rotem und grünem Licht. Der Ansatz k?nnte helfen, die biotechnologische Produktion von Molekülen zu optimieren.

Vergr?sserte Ansicht: Die Forschenden veränderten die Bakterien so, dass sie auf rotes und grünes Licht reagieren (Symbolbild). (Bild: Colourbox)
Die Forschenden ver?nderten die Bakterien so, dass sie auf rotes und grünes Licht reagieren (Symbolbild). (Bild: Colourbox)

Forschende des Departements Biosysteme (D-BSSE) der ETH Zürich in Basel haben einen Cyborg erschaffen – ein Mischwesen aus lebendem Organismus und Maschine. Beim beteiligten Lebewesen handelt sich um das Kolibakterium (Escherichia coli), das in der biologischen Forschung h?ufig verwendet wird, bei der Maschine um einen Computer mit modernster Steuerungstechnik, die das Wachstum der Bakterien regelt. Verbunden sind Organismen und Maschine über zwei Schnittstellen: Der Computer kommuniziert mit rotem und grünem Licht, welches die biotechnologisch ver?nderten Bakterien wahrnehmen k?nnen. In der Gegenrichtung funktioniert die Kommunikation über eine optische Messung der Wachstumsrate der Bakterienkultur. Deren Ergebnis wird in Echtzeit in den Computer eingespeist.

?usserst pr?zise Steuerung

Bereits vor fünf Jahren pr?sentierten die Forschenden gemeinsam mit Kollegen einen einfachen Machbarkeitsnachweis für eine auf Licht basierende Schnittstelle zwischen einem Computer und einer Hefezelle. Diese Schnittstelle funktionierte damals aber im Gegensatz zum jetzigen System noch nicht vollautomatisch. ?Ausserdem regulieren wir jetzt erstmals das Wachstum von Mikroorganismen, und zwar auf sehr pr?zise und feinabstimmbare Weise?, sagt Mustafa Khammash, Professor für Steuerungstheorie und Systembiologie. Mithilfe der Computersteuerung k?nnen die Wissenschaftler die Bakterienkultur so beeinflussen, dass sie genau nach einer vorgegebenen Kurve w?chst.

Das neue System ist zudem extrem zuverl?ssig und widerstandsf?hig. Die Wissenschaftler testeten, wie die Cyborg-Bakterien auf pl?tzliche St?rungen von aussen reagierten. Dazu ver?nderten sie im Experiment beispielsweise die N?hrstoffzusammensetzung der Bakterienkultur oder die Temperatur. Auf solche St?rungen konnte sich das System ausserordentlich gut einstellen. ?Dies alles ist nur m?glich, weil wir für die Steuerung modernste, feedback-gesteuerte Regelungsalgorithmen benutzen, wie sie auch in Linienflugzeugen zum Einsatz kommen, etwa um die Flugh?he stabil zu halten?, erkl?rt Khammash.

?Augen? für die Bakterien

Damit sich die Kolibakterien überhaupt über Licht steuern lassen, mussten die Forschenden die Mikroorganismen biotechnologisch ver?ndern. Sie verwendeten einen Bakterienstamm, dessen Bauplan unter anderem Gene von Cyanobakterien enth?lt. Cyanobakterien k?nnen ihren Stoffwechsel an Licht anpassen und – wie die Pflanzen – die Energie des Lichts nutzen. In den Kolibakterien koppelten die Basler Bioingenieure die genetischen Lichtmesssysteme der Cyanobakterien mit der zellul?ren Regulation für ein Enzym, das die für das Bakterienwachstum unerl?ssliche Aminos?ure Methionin herstellt.

L?sst der Steuerungscomputer die Kolibakterienkultur mit rotem Licht beleuchten, führt das dazu, dass die Bakterien die Methionin-Produktion stoppen und dadurch weniger schnell wachsen. Beleuchtung mit grünem Licht hingegen regt die Methionin-Produktion und damit das Wachstum an.

Biologische Systeme regeln

ETH-Professor Khammashs ursprüngliches Fachgebiet ist die Regelungstechnik. Jetzt arbeitet er im Bereich der Systembiologie und der synthetischen Biologie. Seine wichtigste Forschungsfrage ist im Schnittbereich dieser Fachgebiete angesiedelt: Ist es m?glich, Regelungstechnik für biologische Systeme von Grund auf zu konzipieren? Cybergenetics nennt er dieses Forschungsfeld.

?Es gibt zwei Ans?tze hierfür?, sagt Khammash, ?und beide haben Vor- und Nachteile, die je nach Anwendung zum Tragen kommen.? Zum einen k?nne man – wie in dieser Studie – Mikroorganismen mit einem Computer von aussen steuern. Dies bedinge eine Schnittstelle zwischen Computer und biologischem Organismus. Auch wenn die Kommunikationsm?glichkeiten über eine solche Schnittstelle derzeit noch einigermassen bescheiden sind, hat dieser Ansatz einen grossen Vorteil: Dank einem externen Computerprogramm k?nnen leistungsf?hige Regelungsalgorithmen zum Einsatz kommen. Ausserdem kann das Programm den Bedarf sehr schnell anpassen.

In einem zweiten Ansatz versuchen Wissenschaftler – auch solche am D-BSSE – im Innern von Zellen künstliche Kontrollsysteme zu platzieren, solche mit molekularen, biochemischen Komponenten. ?Meiner Meinung nach ist für therapeutische Anwendungen, beispielsweise in der Zelltherapie, die interne Zellsteuerung langfristig besser geeignet. Denn sie funktioniert ohne zus?tzliche Hardware autonom?, sagt Khammash. ?Für die biotechnologische Herstellung von Molekülen in einem Bioreaktor hingegen dürfte die externe Steuerung über eine Schnittstelle, wie wir sie hier entwickelt haben, besser umsetzbar sein.?

Zus?tzliche Farbkan?le

Bislang benutzen die Basler Forscher für ihre Licht-Schnittstelle die zwei Farben Grün und Rot. Damit steuern sie die Aktivit?t eines einzigen Enzyms. ?In einer Weiterentwicklung k?nnte man sich aber auch komplexere Steuerungen mit zus?tzlichen Lichtkan?len vorstellen?, sagt Khammash. So w?re es denkbar, gleichzeitig mehrere Enzyme zu regulieren. In der biotechnologischen Produktion von Molekülen k?nnte man damit die Wachstumsrate der herstellenden Bakterien und die Produktionsrate des gewünschten Moleküls optimal aufeinander abzustimmen. Dies mit dem Ziel, m?glichst viel des gewünschten Produkts und m?glichst wenige giftige Nebenprodukte zu erhalten.

Literaturhinweis

Milias-Argeitis A, Rullan M, Aoki SK, Buchmann P, Khammash M: Automated optogenetic feedback control for precise and robust regulation of gene expression. Nature Communications 2016, 7: 12546, doi: externe Seite 10.1038/ncomms12546

?hnliche Themen

JavaScript wurde auf Ihrem Browser deaktiviert