Wie schwache Kräfte Zellmembranen verformen
ETH-Forschende konnten zeigen, warum biologische Zellen erstaunlich vielf?ltige Formen annehmen k?nnen: Dies hat mit der Anzahl und St?rke lokaler Kr?ften zu tun, die von Innen auf die Zellmembran wirken. Die Erkenntnis tr?gt dazu bei, bessere Modellsysteme und künstliche Zellen zu entwickeln.
Dornartige Forts?tze, lange Geisseln oder Fasern, unf?rmige Aussackungen: Biologische Zellen k?nnen fast beliebige komplexe Membranstrukturen ausbilden. Mithilfe solcher Strukturen nehmen die Zellen ?ussere Reize wahr, treten mit anderen Zellen in Kontakt oder erkunden ihre Umgebung.
Damit solche vielf?ltigen Formen zustande kommen, sind lokale Kr?fte n?tig, die von Innen auf die Zellmembran wirken. In Zellen üben etwa Bestandteile des Zellskeletts wie Aktinfilamente oder Mikrotubuli solche Kr?fte auf die Membran aus. Allerdings k?nnen auch krankmachende Bakterien, die in Zellen eindringen, ?hnliche Ph?nomene erzeugen. Bekannt ist das etwa von Listerien, den Erregern von Darmentzündungen. Indem sie die Membran deformieren, würden es die Bakterien schliesslich auch schaffen, gesunde Nachbarzellen zu infizieren.
Faszinierende Verformbarkeit
Für Wissenschaftler faszinierend ist zudem die mechanische Reaktion solcher Lipidmembranen, da sie einerseits eine stabile Hülle bildet, die die Wechselwirkungen einer Zelle mit der Umgebung reguliert, andererseits aber auch verformbar ist. Die Frage nach den speziellen mechanischen Eigenschaften solcher Membranen ist sowohl von praktischem als auch fundamentalem Interesse, insbesondere aus materialwissenschaftlicher Sicht.
Um solche Vorg?nge untersuchen zu k?nnen, verwenden Forschende seit L?ngerem grosse Vesikel, die von einer Doppellipid-Membran umgeben sind. Ein einfaches überschaubares System also, welches biologische Zellen imitiert. Nicht gelungen war es bisher, aus dem Innern solcher Vesikel kontrolliert Kr?fte wirken zu lassen, welche zu den in natürlichen Zellen beobachteten Strukturen führen.
Selbstangetriebene Partikel als L?sung
Nun hat eine Gruppe von Forschenden unter der Leitung von Jan Vermant, Professor für Weiche Materialien der ETH Zürich, eine L?sung für dieses bisher ungel?ste Problem gefunden. Sie befüllten die Vesikel mit einem Mikrometer grossen Partikeln, die sich im Vesikel eigenst?ndig bewegen k?nnen. Sie prallen zuf?llig auf die Membran und erzeugen so lokale Kr?fte, welche zur Ausbildung von Geisseln, Antennen und weiteren Strukturen führen.
?Es ist uns nicht nur gelungen, ein künstliches, stark vereinfachtes System zu schaffen, welches Zellen sehr gut imitiert?, sagt Rao Vutukuri, Marie-Curie-Stipendiat in Vermants Gruppe. ?Dank diesem Ansatz konnten wir auch die Materialphysik und Mechanik von Membranen aus Doppellipidschichten kl?ren.? Die entsprechende Studie ist soeben in der Fachzeitschrit externe Seite Nature erschienen. Vutukuri ist Erstautor.
In Zusammenarbeit mit Forschenden des Forschungszentrums Jülich (D) kombinierten die ETH-Forschenden ihre Experimente überdies mit Computersimulationen, um den genauen, den Membran-Deformationen zugrundeliegenden Mechanismus besser zu verstehen. Damit konnten sie aufzeigen, wie die selbstangetriebenen Partikel eine Vielzahl von ungew?hnlichen Formen hervorrufen. Beobachtungen aus den Experimenten und Simulationen stimmten gut überein.
Partikel triggern Formenvielfalt
Beide zeigen: Die Partikel prallen zun?chst an zuf?lligen Punkten auf die Membran der Vesikel – und l?sen dabei ?hnliche Effekte aus wie die Listerien in einer echten Zelle. Der Punkt, wo ein Partikel aufgeschl?gt, verformt die Membran lokal, was weitere Partikel anzieht. Die Membran beult sich immer st?rker aus, bildet bald dornartige Forts?tze oder Geisseln.
Ob sich Vesikel verformen, h?ngt jedoch davon ab, wie stark sie mit Partikeln gefüllt sind. ?Weniger ist in dem Fall mehr?, sagt Vutukuri. Je mehr Partikel die Vesikel enthielten, desto weniger reagierte die Membran auf die von den Partikeln ausgeübten punktuellen Kr?fte. Eine Füllmenge von drei Prozent war hingegen optimal und führte zur Bildung der verrücktesten Membranstrukturen. Diese Deformationen k?nnen sich auch wieder zurückbilden. ?Das System ist sehr dynamisch?, sagt Vutukuri. ?Die Formenüberg?nge lassen sich nun sogar voraussagen.?
?Auch wenn unsere Vesikel die Komplexit?t einer echten Zellen nicht ganz abbilden, die Art und Weise, wie eine sich selbstorganisierende Struktur wie die Membran auf grosse, lokale Deformationen reagiert, ist faszinierend. Ihre Reaktion auf aktive Kr?fte wurde bislang untersch?tzt?, sagt ETH-Professor Vermant. Die Studie, so sind die ETH-Forscher überzeugt, ebnet den Weg zur Entwicklung neuer künstlicher Membransysteme, künstlicher Zellen oder winziger Roboter aus weichen Materialien.
Literaturhinweis
Vutukuri HR, et al. Active particles induce large shape deformations in giant lipid vesicles. Nature, online publiziert 30.09.2020; doi: externe Seite 10.1038/s41586-020-2730-x