Detailliertes Bild der menschlichen Netzhaut
In einem hochaufgel?sten Atlas zeigen Forschende aus Basel und Zürich auf, wie sich die menschliche Netzhaut entwickelt. Dazu verwendeten sie unter anderem eine neue Technik, mit der sie über 50 Proteine gleichzeitig sichtbar machen k?nnen.
- Vorlesen
- Anzahl der Kommentare
Das Wichtigste in Kürze
- Ein neuer Atlas zeigt, wie sich die menschliche Netzhaut entwickelt.
- Die Forschenden haben dazu dreidimensionale Gewebestrukturen kartiert, die sie im Labor kultiviert hatten. Diese werden Organoide genannt.
- Der Atlas soll helfen, den Verlauf einer degenerativen Augenkrankheit, an der Menschen erblinden k?nnen, zu stoppen.
In welchem menschlichen Gewebe kommt wo welcher Zelltyp vor? Welche Gene sind in den einzelnen Zellen aktiv, und welche Proteine findet man dort? Darüber soll ein spezieller Atlas Auskunft geben – vor allem auch darüber, wie sich die unterschiedlichen Gewebe w?hrend der Embryonalentwicklung bilden und wie Krankheiten entstehen. Nicht nur von Menschen direkt isoliertes Gewebe m?chten Forschende dazu kartieren, sondern auch sogenannte Organoide. Das sind dreidimensionale Gewebeklümpchen, die im Labor kultiviert werden und im kleinen Massstab eine ?hnliche Entwicklung durchlaufen wie menschliche Organe.
?Organoide haben den Vorteil, dass wir in ihre Entwicklung eingreifen und an ihnen Wirkstoffe testen k?nnen. Wir k?nnen dadurch mehr über gesundes Gewebe sowie über Krankheiten erfahren?, erkl?rt Barbara Treutlein, Professorin für Quantitative Entwicklungsbiologie am Departement für Biosysteme der ETH Zürich in Basel.
Als Beitrag zu einem solchen Atlas hat Treutlein nun zusammen mit Forschenden der Universit?ten Zürich und Basel einen Ansatz entwickelt, um sehr viele Informationen über Organoide und ihre Entwicklung zu sammeln und zusammenzuführen. Aufgezeigt haben die Forschenden das am Beispiel von Organoiden der menschlichen Netzhaut, die sie aus Stammzellen gewonnen haben.
Viele Proteine gleichzeitig sichtbar
Im Zentrum der Methoden, welche die Wissenschaftler:innen für ihren Ansatz nutzten, stand die 4i-Technologie (iterative indirect immunofluorescence imaging). Dies ist ein neues bildgebendes Verfahren, um in einer dünnen Gewebeprobe mehrere Dutzend Proteine mittels Fluoreszenzmikrosopie hochaufl?send sichtbar zu machen. Entwickelt hat die 4i-Technologie vor wenigen Jahren Lucas Pelkmans, Professor an der Universit?t Zürich und Mitautor der Studie, die soeben im Fachmagazin externe Seite Nature Biotechnology erschien. In der vorliegenden Arbeit haben die Forschenden diese Methode nun erstmals bei Organoiden angewandt.
In der Regel machen Forschende mittels Fluoreszenzmikroskopie in einem Gewebe drei Proteine mit je einem Fluoreszenzfarbstoff sichtbar. Mehr als fünf Proteine aufs Mal k?nnen aus technischen Gründen gar nicht gef?rbt werden. Bei der 4i-Technologie werden drei Farbstoffe genutzt, diese nach der Messung jedoch wieder aus der Gewebeprobe weggewaschen, und es werden drei neue Proteine sichtbar gemacht. Ein Roboter führte diesen Schritt 18 Mal durch, was insgesamt 18 Tage dauerte. Schliesslich fügt ein Computer die Einzelbilder zu einem einzigen Mikroskopiebild zusammen, auf dem 53 verschiedene Proteine sichtbar sind. Sie geben Aufschluss auf die Funktion der einzelnen Zelltypen, aus denen die Netzhaut besteht, also zum Beispiel auf St?bchen- und Zapfenzellen sowie Ganglienzellen.
Erg?nzt haben die Forschenden diese Bildinformation von Netzhautproteinen mit Informationen dazu, welche Gene in den einzelnen Zellen abgelesen werden.
Hohe r?umliche und zeitliche Aufl?sung
Alle diese Analysen führten die Wissenschaftler:innen bei Organoiden durch, die unterschiedlich alt waren und sich somit in einem unterschiedlichen Entwicklungsstadium befanden. So erstellten die Forschenden eine Zeitreihe von Bildern und genetischer Information, welche die gesamte 39 Wochen dauernde Entwicklung von Netzhaut-Organoiden beschreibt. ?Wir k?nnen damit zeigen, wie sich das Organoid-Gewebe langsam aufbaut, wo sich wann welche Zelltypen vermehren und wo sich die Synapsen befinden. Die Vorg?nge sind vergleichbar mit jenen der Netzhautbildung w?hrend der Embryonalentwicklung?, sagt Gray Camp, Professor an der Universit?t Basel und einer Leiter dieser Studie.
Ihre Bild- und weiteren Informationen zur Netzhaut-Entwicklung publizierten die Forschenden auf einer ?ffentlich zug?nglichen Website: EyeSee4is.
Weitere Gewebetypen in Planung
Bis anhin haben die Wissenschaftler:innen untersucht, wie sich die gesunde Netzhaut entwickelt. In Zukunft m?chten sie die Entwicklung in den Netzhaut-Organoiden mit Wirkstoffen oder genetischen Ver?nderungen bewusst st?ren. ?Damit werden wir neue Einblicke gewinnen in Krankheiten wie Retinitis pigmentosa, die vererbbar ist und bei der die lichtempfindliche Rezeptoren der Netzhaut in einem schleichenden Prozess degenerieren, w?hrend dem Betroffene erblinden?, sagt Camp. Die Forschenden wollen herausfinden, wann dieser Vorgang beginnt und wie man ihn allenfalls stoppen kann.
Treutlein und ihre Kolleg:innen sind zudem daran, den neuen Ansatz zur detaillierten Kartierung auch bei anderen Gewebetypen wie verschiedenen Abschnitten des menschlichen Gehirns und bei verschiedenen Tumorgeweben anzuwenden. Schritt für Schritt soll damit der Atlas entstehen, der Auskunft über die Entwicklung von menschlichen Organoiden und Geweben gibt.
Literaturhinweis
Wahle P, Brancati G, Harmel C, He Z et al.: Multimodal spatiotemporal phenotyping of human retinal organoid development. Nature Biotechnology, 8. Mai 2023, doi: externe Seite 10.1038/s41587-023-01747-2