Wissenschaftlerinnen und Wissenschaftler weltweit k?nnen nun Vollgas geben bei der Erforschung des chemischen Kunststoffrecyclings. Forschende der ETH Zürich haben dafür wichtige Grundlagen gelegt und gezeigt: Auf das Rühren kommt es an.
- Vorlesen
- Anzahl der Kommentare
In Kürze
- Mit chemischem Recycling k?nnen aus Kunststoffmüll hochwertige Produkte hergestellt werden.
- Wissenschaftlern der ETH Zürich ist es gelungen, Polyethylen und Polypropylen in Moleküle zu zerlegen, die als Treibstoff oder Schmiermittel verwendet werden k?nnen.
- Ihre Arbeit setzt Standards, dank denen Forschende weltweit nun geeignete chemische Katalysatoren für den Recyclingprozess entwickeln k?nnen.
Hunderte Millionen Tonnen Kunststoffabfall fallen j?hrlich weltweit an. Wissenschaftlerinnen und Wissenschaftler arbeiten mit Hochdruck an neuen Methoden, um einen Grossteil davon zu qualitativ hochwertigen Produkten zu rezyklieren und damit eine echte Kreislaufwirtschaft zu erm?glichen. Heute ist das noch nicht der Fall. Kunststoffabf?lle werden vor allem mechanisch rezykliert: zerkleinert und dann eingeschmolzen. Daraus entstehen zwar neue Kunststoffprodukte, aber die Qualit?t der Produkte nimmt von Recyclingschritt zu Recyclingschritt drastisch ab.
Eine Alternative dazu ist das chemische Recycling, das qualitativ hochwertige Produkte hervorbringt und an dessen Entwicklung intensiv geforscht wird. Langfristiges Ziel ist es, die langkettigen Kunststoffmoleküle (die Polymere) chemisch in ihre Bausteine (die Monomere) zu zerlegen. Aus ihnen k?nnten dann wieder neue, hochwertige Kunststoffe hergestellt werden. Ein echter nachhaltiger Kreislauf würde entstehen.
Treibstoffe aus Kunststoffmüll
Zun?chst geht es bei der Entwicklung des chemischen Recyclings aber darum, die langen Polymer-Ketten in kürzerkettige Moleküle aufzuspalten, die zum Beispiel als Flüssigtreibstoff oder Schmiermittel verwendet werden k?nnen. Der Plastikabfall erh?lt so ein zweites Leben als Benzin, Kerosin oder Motoren?l. Für die Entwicklung dieses Prozesses haben Wissenschaftlerinnen und Wissenschaftler der ETH Zürich nun wertvolle Grundlagen erarbeitet. Diese erm?glichen es der gesamten Wissenschaftsgemeinde, das Recycling gezielt zu entwickeln.
Die Forschenden der Gruppe von Javier Pérez-Ramírez, Professor für Katalyse-Engineering, untersuchten die Spaltung von Polyethylen und Polypropylen mit Wasserstoff. Auch dabei wird der Kunststoff zuerst in einem Stahltank geschmolzen. Anschliessend wird der gasf?rmige Wasserstoff in die Kunststoffschmelze geleitet. Wichtig sind zudem pulverf?rmige Katalysatoren, die die Chemiker:innen beifügen, zum Beispiel solche, die das Metall Ruthenium enthalten. Durch die Wahl eines geeigneten Katalysators erh?hen Chemiker:innen die Effizienz der chemischen Reaktion, und sie k?nnen damit beeinflussen, dass vor allem Moleküle einer bestimmten gewünschten Kettenl?nge und m?glichst wenig Nebenprodukte wie Methan oder Propan entstehen.
Drehzahl und Geometrie ist entscheidend
?Die Kunststoffschmelze ist tausendmal dickflüssiger als Honig. Entscheidend ist, wie man sie im Tank umrührt, damit das Katalysatorpulver und der Wasserstoff wirklich überall hinkommen?, erkl?rt Antonio José Martín, Wissenschaftler in Pérez-Ramírez’ Gruppe. In Experimenten und in Computersimulationen zeigte das Forscherteam: Die Kunststoff-Masse wird am besten mit einem Flügelrad gerührt, dessen Flügel parallel zur Achse stehen. Im Vergleich zu einem Propeller mit abgewinkelten Flügeln oder einem Rührer in Turbinenform führt dies zu einer gleichm?ssigeren Durchmischung und zu weniger Str?mungswirbeln. Sehr wichtig ist ausserdem die Rührgeschwindigkeit. Sie darf nicht zu langsam und nicht zu schnell sein. Die ideale Drehzahl liegt nahe bei 1000 Umdrehungen pro Minute.
Den Forschenden ist es gelungen, den gesamten Prozess des chemischen Recyclings mit all seinen Parametern in einer mathematischen Formel zu beschreiben. ?Es ist der Traum eines jeden Chemieingenieurs, eine solche Formel für seinen Prozess zur Hand zu haben?, sagt Pérez-Ramírez. Alle Wissenschaftlerinnen und Wissenschaftler im Forschungsfeld k?nnen damit nun den Einfluss der Rührer-Geometrie und der Drehzahl pr?zise berechnen.
In künftigen Experimenten k?nnen sie verschiedene Katalysatoren gezielt vergleichen; den Einfluss des Mischens auf den Prozess haben sie dabei unter Kontrolle. Ausserdem sind die erarbeiteten Grundlagen wichtig, um die Technologie künftig vom Labormassstab auf grosse Recyclinganlagen hochzuskalieren. ?Doch im Moment konzentrieren wir uns auf die Erforschung besserer Katalysatoren für das chemische Kunststoffrecycling?, sagt Martín.
Diese Forschung wurde unter anderem vom Nationalen Forschungsschwerpunkt externe Seite NCCR Catalysis unterstützt.
Literaturhinweis
Jaydev SD, Martín AJ, Garcia D, Chikri K, Pérez-Ramírez J: Assessment of transport phenomena in catalyst effectiveness for chemical polyolefin recycling. Nature Chemical Engineering, 28. August 2024, doi: externe Seite 10.1038/s44286-024-00108-3