Innovative Dachkonstruktion besteht Praxistest
Mit neuartigen digitalen Planungs- und Herstellungsmethoden haben Wissenschaftler der ETH Zürich einen Prototyp für ein ultra-dünnes, geschwungenes Betondach gebaut. N?chstes Jahr soll die Methode zum ersten Mal an einem echten Geb?ude eingesetzt werden.
Wissenschaftler der ETH Zürich haben mit neuartigen Design- und Fabrikationsmethoden einen Prototyp für ein ultra-dünnes und stark gewelltes Betondach gebaut. Das Dach geh?rt zu einer innovativen Wohneinheit mit dem Namen HiLo, die n?chstes Jahr auf dem Forschungsgeb?ude NEST der Empa und Eawag in Dübendorf errichtet werden soll. Nach der Fertigstellung sollen Gastforschende der Empa darin wohnen und arbeiten. Wissenschaftler um Philippe Block, Professor für Architektur und Tragwerk und Arno Schlüter, Professor für Architektur und Geb?udesysteme, wollen dort neue Leichtbauweisen erproben und sie mit intelligenten und adaptiven Geb?udesystemen kombinieren.
Das selbsttragende und doppelt gekrümmte Schalendach besteht aus mehreren Schichten. Auf der inneren Betonlage kommen die Heiz- und Kühlschlangen zu liegen sowie eine Isolationsschicht. Gegen aussen schliesst eine weitere Betonschicht das Dach ab, auf welcher Dünnschicht-Solarzellen angebracht werden. Dank dieser Technologie und einer adaptiven Solar-Fassade soll die Wohneinheit dereinst mehr Energie generieren, als sie verbraucht.
Im Massstab 1:1 erprobt
Die Konstruktionsmethode für das Dach wurde von Forschern der Block Research Group unter der Leitung von Prof. Block und Dr. Tom Van Mele zusammen mit dem Architekturbüro supermanoeuvre entwickelt und an einem Prototyp im Massstab 1:1 erprobt. Der Prototyp, der bereits wieder rückgebaut wurde, um zukünftigen Experimenten Platz zu machen, war siebeneinhalb Meter hoch und hatte eine Fl?che von 162 Quadratmetern. Die Dicke des Betons variierte zwischen 3 Zentimetern an den R?ndern des Dachs und 12 Zentimetern an den Auflagefl?chen.
Anstatt auf herk?mmliche Schalungen aus Holz oder Kunststoff, setzten die Forscher auf ein Netz aus Stahlseil, das in einer Gerüstkonstruktion aufgespannt wird. Auf dieses Netz kommt ein Textil aus Polymer zu liegen, das dem Beton als Schalung dient. So k?nnen die Wissenschaftler nicht nur massiv Baumaterial sparen, sondern auch L?sungen für die wirtschaftliche Herstellung ganz neue Design-Formen bereitstellen. Ein weiterer Vorteil dieser Methode ist, dass bereits w?hrend des Betonieren des Dachs die Fl?che darunter frei bleibt und somit Bauarbeiten im Geb?udeinnern zeitgleich stattfinden k?nnen.
Die Bauarbeiten am Betondach
Algorithmen berechnen exakte Form
Das Drahtseil-Netz ist so konzipiert, dass es unter dem Gewicht des nassen Betons die gewünschte Form annimmt. Dies gelingt dank einer Berechnungsmethode, die Block und seine Gruppe im Rahmen des Nationalen Forschungsschwerpunkts Digitale Fabrikation weiterentwickelt haben. Die Algorithmen sorgen dafür, dass sich die Kr?fte in jedem einzelnen Stahlseil richtig verteilen und das Dach exakt die vorbestimmte Form annimmt. ?Wenn wir die Geometrie richtig berechnen, dann gewinnen wir die Stabilit?t prim?r aus der Geometrie und nicht aus dem Baumaterial?, sagt Philippe Block. Das Kabelnetz wiegt nur 500 Kilogramm, das Textil 300 Kilogramm. Es handelt sich also um insgesamt nur 800 Kilo Material, die 20 Tonnen nassen Beton tragen.
Der Bau des Dachs w?re ohne die Hilfe modernster Computer- und Herstellungstechniken nicht denkbar. Bauroboter kamen dennoch nicht zum Einsatz, stattdessen setzten die Wissenschaftler auf die Pr?zision und auf das K?nnen von Handwerkerinnen und Handwerkern. Spezialisten der Firmen Bürgin Creations und Marti haben den Beton mit einer eigens dafür entwickelten Methode aufgespritzt. Sie mussten darauf achten, dass das Textil dem Druck jederzeit standhalten konnte. Gemeinsam mit Holcim Schweiz definierten die Wissenschaftler die richtige Betonmischung, die flüssig genug sein musste, um aufgespritzt werden zu k?nnen und z?hflüssig genug, um auch an den vertikalen Stellen haften zu bleiben.
Bewiesen, dass es funktioniert
Den Prototyp haben die Wissenschaftler um Block im Robotic Fabrication Lab der ETH Zürich innerhalb von sechs Monaten gebaut. Er stellt einen wichtigen Meilenstein für das Projekt dar. ?Wir haben bewiesen, dass es m?glich ist, ein leichtes und flexibles Schalungssystem für Beton zu bauen und dass komplexe Betonstrukturen ohne grossen Materialaufwand m?glich sind. In enger Zusammenarbeit mit den Unternehmen konnten wir zeigen, dass unser System auch auf der NEST-Baustelle funktionieren wird?, sagt Block.
Vom Projektstart bis zum fertigen Prototyp dauerte es vier Jahre. Dies auch, weil Philippe Block die zahlreichen Industriepartner eng in die Entwicklung des Prototyps einbeziehen wollte. N?chstes Jahr will Block das Dach in acht bis zehn Wochen auf dem NEST-Geb?ude neu bauen. Die einzelnen Komponenten der Dachkonstruktion lassen sich beliebig oft wiederverwenden. Das Drahtseilnetz l?sst sich in wenige Teile zerlegen, die innerhalb kurzer Zeit wieder zusammengefügt und neu aufgeh?ngt werden k?nnen.
Energie produzieren für die Nachbarn
Die Einheit HiLo besticht nicht nur durch die aussergew?hnliche Dachkonstruktion, sondern auch durch ein neuartiges Bodensystem in Leichtbauweise und eine Geb?udetechnik mit positiver Energiebilanz. Im NEST-Geb?ude wird Energie zwischen den einzelnen Units ausgetauscht. Die Einheit HiLo ist angehalten, mehr Energie zu produzieren als sie verbraucht. Als Ausgleich kann HiLo die Abw?rme der anderen Geb?ude-Einheiten sowie der Geb?ude aus dem Distriktnetz des NEST nutzen. Hier setzt die Arbeit von ETH-Professor Arno Schlüter an. Der Professor für Architektur und Geb?udesysteme wird für HiLo ein Geb?udesystem mit Sensoren entwickeln, dass die W?rme bei tiefen Temperaturen nutzt, um ein angenehmes Raumklima zu schaffen. Dazu nutzt er die Bauteile des Tragwerkes, auch des Daches, die thermisch aktiviert werden.