Mit maschinellem Lernen den Regenwald erhalten
Der Computerwissenschaftler David Dao entwickelt lernf?hige Algorithmen, die mit Satelliten- und Drohnenbildern voraussagen k?nnen, wo sich die Entwaldung des Regenwalds weiter ausdehnen wird. Heute stellt er seine Forschung an der Klimakonferenz in Madrid vor. Im Januar beginnt ein Testprojekt in Chile.
Die Bilder der rauchenden Regenw?lder im Amazonas haben sich in diesem Sommer ins Ged?chtnis gebrannt – und mancher fragte sich, wie viel Wald geht da verloren? Einer, der sich dieser Frage widmet, ist der Computerwissenschaftler David Dao, Doktorand am externe Seite DS3Lab des ETH-Instituts für Computing Platforms. Der Deutsche ist ein Spezialist für maschinelles Lernen und entwickelt lernf?hige Algorithmen, die selbst?ndig Satelliten- und Drohnenaufnahmen auswerten. Auf diese Weise k?nnen sie erkennen, wo und in welchem Ausmass die Waldfl?che kleiner wird. Sie k?nnen sogar voraussagen, wo der Regenwald in naher Zukunft weiter schrumpfen wird. Der Trick liegt in der Art, wie sie Bilder lesen.
Satelliten und Drohnen liefern unz?hlige Bilder über den Regenwald – aus verschiedenen H?hen und sowie in unterschiedlicher Aufl?sung und Qualit?t. Gemeinsam ist diesen Aufnahmen, dass die Gegenst?nde, die sie abbilden, nicht beschriftet oder gekennzeichnet sind. Anders als auf Landkarten tragen die Orte keine Namen sowie die W?lder, Flüsse und Strassen keine einheitliche Signatur. Sie haben kein ?Label?, wie die Informatiker sagen. Die Computer-Algorithmen k?nnen deshalb nicht direkt aus dem Bild herauslesen, was ein Waldgebiet ist und was nicht.
?Fischknochen? zeigen, wo der Wald schrumpft
Um zu erkennen, wo sich der Regenwald befindet und ob seine Fl?che zurückgeht, lesen die Algorithmen deshalb Sequenzen, sagt Dao. Das sind Abfolgen einzelner Bilder, die zeitlich hintereinander folgen – so wie das bei klassischen Filmspulen oder Comic Strips der Fall ist. Wird nun zum Beispiel eine neue Strasse in den Regenwald gezogen, dann bilden sich im Lauf der Zeit zahlreiche Seitenstrassen aus. Entlang dieser Strassen wachsen die Fl?chen, auf denen Wald gerodet wird. Aus der Vogelperspektive gleicht das entstehende Muster dem Skelett eines Fisches mit Wirbels?ule und Gr?ten – von daher sein Spitzname ?Fischknochen?.
Indem die Algorithmen solche Sequenzen von zeitlich aufeinanderfolgenden Luftaufnahmen vergleichen, k?nnen sie berechnen, wie sich Strassenbild und Waldfl?chen mit der Zeit ver?ndern. Auf diese Weise ben?tigen die lernf?higen Algorithmen keine Labels, um ein Gesamtbild zu erstellen, wo der Regenwald schrumpft. Zudem k?nnen sie voraussagen, wo sich die Entwaldung am st?rksten ausdehnen wird. Dieses Modell funktioniert auch für die Entwaldung in der N?he von Flüssen oder rund um Landwirtschaftsfl?chen.
Testlauf im chilenischen Regenwald
Für externe Seite sein Forschungsprojekt namens ?Komorebi? hat David Dao Partner aus der Praxis: Zum Beispiel die chilenische Forstbeh?rde CONAF (Corporación Nacional Forestal). Im Januar startet ein Pilotprojekt im ?Valdivianischen Regenwald?, der sich südlich der Hauptstadt Santiago de Chile an der Pazifikküste befindet. Im realen Regenwald lassen sich die Vorhersagealgorithmen testen und weiterentwickeln – denn Daos Ansatz birgt das Potenzial, dass man nicht nur den Rückgang des Regenwalds insgesamt erkennen kann, sondern auch, welche Baumarten besonders stark betroffen sind.
Das spielt im Zusammenhang mit dem Klimawandel eine Rolle, weil nicht alle Baumarten gleich viel CO2 speichern, und weil es im Waldschutz auch Ans?tze gibt, die lokale Bev?lkerung finanziell zu unterstützen, wenn sie B?ume als CO2-Speicher erh?lt anstatt den Wald zu roden.
Im chilenischen Regenwald l?sst sich unter anderem testen, wie man die Genauigkeit der Vorhersagealgorithmen verbessern kann, wenn man neben Satellitenbildern auch die Aufnahmen von tiefer fliegenden Drohnen verwendet. Im Unterschied zu Satellitenbildern k?nnen Drohnenbilder auf 30 Zentimeter genau sein: ?Wenn wir Drohnenbilder haben, k?nnen wir auch Ver?nderungen der Baumarten beobachten und Ver?nderungen der Artenvielfalt erkennen?, sagt Dao.
Heute stellt David Dao sein Forschungsprojekt im Rahmenprogramm der 25. UN-Klimakonferenz in Madrid (COP25) vor. An der Session, zu der die Interamerikanische Entwicklungsbank und die chilenische Forstbeh?rde einladen, geht es sowohl darum, wie man neue Technologien einsetzt, um Ver?nderungen der Landnutzung zu erfassen und vorauszusagen, als auch darum, wie man die Ergebnisse mit Zahlungen verbinden kann, damit die lokale Bev?lkerung den Regenwald erh?lt.
KI und Klimafinanzierung an der COP25
Neben David Dao sind weitere Forschende der ETH Zürich aus den Bereichen Klimafinanzierung und Maschinelles Lernen an Veranstaltungen der UN-Klimakonferenz 2019 (externe Seite COP25) pr?sent: Zum Beispiel hat Lynn Kaack, Postdoktorandin in der Energy Politics Group, mit der internationalen Forschergruppe ?externe Seite Climate Change AI? eine Podiumsdiskussion im chilenischen Pavillon organisiert. Diskutiert wurde, wie sich Methoden der künstlichen Intelligenz für den Klimaschutz nutzen lassen und welche Herausforderungen für Forschung, Industrie und den ?ffentlichen Sektor bestehen.
Das offizielle Schweizer Side Event führt Lucas Bretschger, ETH-Professor für ?konomie / Ressourcen?konomie, durch – mit der Schweizer Delegation und seinen Doktorandinnen Anna Stuenzi und Julia Bingler. Das Thema ist die Klimafinanzierung und besonders das Ziel der Ausrichtung der globalen Finanzstr?me auf die international vereinbarten Klimaziele. Für Finanzzentren wie die Schweiz und für die vom Klimawandel besonders betroffenen Regionen ergeben sich daraus besondere Herausforderungen.