However, these methods are not strictly mathematically accurate. And, in some cases, they have reached a limit. “Normally, you would expect that, if you increase the resolution of a calculation, the results become more accurate,” says Mishra. In other words, including more points in time and space to reduce error should improve the approximations and closer represent reality. But this is not the case when it comes to highly turbulent fluids, as Mishra demonstrated. On the contrary: The results obtained at very high resolution do not relate to the lower resolution results at all — rather than converge, they become unrecognisable. “Which also means that you cannot calculate any predictions for the quantities anymore,” explains the mathematician.
Random perturbations are useful
Mishra and his team have been working on a way to overcome this limitation when dealing some highly turbulent fluids by using so-called statistical solutions. For this, they first randomized the problem by introducing many tiny perturbations into the flows being investigated, and then they analysed the averaged outcome. As the scientists discovered, these averages indeed do converge with higher resolution. “This is the basis of statistical solutions,” explains Mishra. “If individual realizations of experiments do not converge, you look at averages of these quantities instead. These then begin to get more and more convergent.” Simply put: “When representing turbulent flows, it’s the details that destroy you. That’s why with averages you start to see more structure.” This effect not only applies to a quantity itself, like density, but also to its variance and its probability distribution, as Mishras group has established.
To make matters even more complex, one must also consider that the statistical properties of flows, at different points in space, are not independent from each other. For instance, in meteorology, the temperature in Zurich not only affects nearby sites but also sites far away, like the temperature in Munich. “That’s why instead of examining single points, we have to take into account correlations between points,” says Mishra. “And since we are talking about complex non-linear problems, these multi-point correlations become extremely complicated.”
Solving turbulent and explosive problems
So, what about proof of the theory? “We don’t have a comprehensive theorem yet, but we can compute such statistical solutions,” says Mishra. “So far, every test prediction we have made with 2-D flows has checked out.” Be it mean values, variance, probability distribution, correlations, functions — as the resolution converges, all statistics converge too, and the solutions obtained are stable.